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Benchmark configuration interaction spectroscopic constants
for X 1Sg

1 C2 and X 1S1 CN1

Matthew L. Leininger, C. David Sherrill,a) Wesley D. Allen, and Henry F. Schaefer III
Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602

~Received 14 November 1997; accepted 20 January 1998!

Explicit full configuration interaction~FCI! computations in a double-z plus polarization~DZP!
basis, involving as many as 105 million Slater determinants, have been performed to sample the
potential energy curves ofX 1Sg

1 C2 andX 1S1 CN1 for benchmark purposes. Quartic force fields
have been determined at the optimized structures, and sets of anharmonic spectroscopic constants
@r e , ve , Be , D̄e , ae , andvexe# have been ascertained. Analogous results obtained from high-level
but inexact correlation treatments establish a CISDTQ,CCSDT,CISDTQPH'FCI series of
increasing accuracy for the notoriousX 1Sg

1 C2 andX 1S1 CN1 multireference systems. The data
also reveal that recent schemes for CI1PT extrapolations to the FCI limit are quite accurate, to
within 0.4 mEh, 0.001 Å, and 4 cm21 in the total energy,r e , andve , respectively. Whether such
schemes approximate FCI curves with sufficient smoothness to reproduce the anharmonic data
obtained here is elevated as a challenge for future work. ©1998 American Institute of Physics.
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INTRODUCTION

Achieving the full configuration interaction~FCI! limit
has been a persistent goal of molecular quantum mecha
but for most chemical systems explicit FCI computations
intractable due to their factorial growth with respect to t
one-particle basis and the number of electrons. In 19
Evangelisti and co-workers1 were the first to converge a
explicit FCI wave function with over one billion determ
nants, although the feasibility of iterations toward this mi
stone had been demonstrated 6 years earlier.2 The timings of
their out-of-core vectorized and distributed-memory paral
ized code presaged FCI computations involving over 110

determinants. Shortly thereafter, Wulfov3 claimed to pass the
one quadrillion~1012 determinants! mark in FCI extrapola-
tions on a personal computer, a powerful contribution inde
if the proposed CI1PT scheme proves to be a reliable es
mator of exact FCI energies. Subsequent work4 reported
CI1PT energies, equilibrium geometries, and harmonic
brational frequencies for a series of diatomic molecules,
cluding F2, BF, C2, CN1, and NO1, in a DZP basis. These
results were used to calibrate high-level theoretical meth
such as configuration interaction through quadruple subs
tions ~CISDTQ! and complete coupled cluster through trip
excitations~CCSDT!, but confirmations by means of explic
FCI data were not possible.

The Wulfov work3,4 is representative of the immens
literature advocating configuration selection schemes for
tematic approaches to the FCI limit. It has long been rec
nized that the FCI Hamiltonian matrix is very sparse and t
perturbation theory can be used to evaluate/estimate co
butions for myriad, unimportant configurations.5–13 Contem-

a!Present address: Department of Chemistry, University of California, B
keley, California 94720.
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porary CI1PT methods3,14,15 are akin to the original two-
class CIPSI approach6 developed in 1973. The Hamiltonia
is first diagonalized in an initial internal subspace to obt
multiconfigurational zeroth-order solutions (E0 ,C0), and
then within the remaining external space of Slater deter
nants (F I), or alternatively configuration state function
~CSFs!, the perturbation formula r I5^C0uHuF I&

n(E0

2HI ,I)
21 is used to compute contributions (r I) to either the

first-order wave function~CIPSI, n51! or the second-orde
energy~CI1PT, n52!. All F I with ur I u greater than a se
lected threshold~h! are then added to the internal space, a
the process is repeated until self-consistency is achieve
the internal space becomes prohibitively large. In both CIP
and CI1PT schemes, the final energy (Eh) is thus comprised
of an exact solution within a self-consistent internal spa
plus perturbational corrections for the residual exter
space; the FCI limit is estimated by extrapolatingEh se-
quences to zero threshold. The CIPSI-3 variant partitions
external space into two classes based on a second thre
~t!, the treatment of the intermediate space satisfyingh
.ur I u.t being improved past second order either by var
tional means7,16,17 or by fourth-order perturbation theory.7

Continuing advances have extended the CIPSI methodo
to direct CI algorithms17–19 and size-consistent dressing
the Hamiltonian.20 The wave function operator~WFO! ap-
proach of Wulfov and co-workers3,15 is an efficient reformu-
lation of the CI1PT method based on Slater determina
rather than configuration state functions.14

Another established configuration selection approach
the MRD-CI method of Buenker and Peyerimhoff.10,11In this
treatment the reference space is chosena priori rather than
iteratively, customarily involving only the chemically impor
tant valence orbitals, and a selection scheme is used to
proximate the associated multireference CISD energy.
single and double substitutions are winnowed by adding e

r-
7 © 1998 American Institute of Physics
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TABLE I. DZP configuration interaction spectroscopic constants ofX 1Sg
1 C2 andX 1S1 CN1.a

C2 CN1

CISDTQ CCSDT CISDTQPH FCI Expt.b CISDTQ CCSDT CISDTQPH FCI Expt.b

r e 1.2650 1.2675 1.2694 1.2695 1.2425 1.1975 1.1993 1.2010 1.2012 1.
Be 1.7558 1.7490 1.7437 1.7433 1.8198 1.8192 1.8136 1.8085 1.8081 1.
ve 1842.5 1829.1 1814.6 1813.4 1854.7 2000.8 1988.4 1974.5 1973.6 2033.
vexe 13.00 12.57 13.28 13.19 13.34 14.81 15.04 15.67 15.71 16.1
D̄e 0.6377 0.6397 0.6441 0.6444 0.692 0.6015 0.6035 0.6069 0.6070 0.7
ae 0.01668 0.01652 0.01698 0.01699 0.01765 0.01787 0.01813 0.01838 0.01838 0
f rr 12.0014 11.8265 11.6398 11.6251 12.1606 15.2425 15.0531 14.8442 14.8307 15
f rrr 275.77 274.08 273.97 273.89 277.73 2106.96 2106.42 2105.64 2105.56 2111.55
f rrrr 353 350 343 346 366 559 559 540 538 539

aBond distances (r e) in Å; harmonic frequencies (ve) in cm21; rotational (Be), vibration-rotation interaction (ae), and anharmonicity (vexe) constants in
cm21; quartic centrifugal distortion parameters (D̄e) in 1025 cm21; quadratic (f rr ), cubic (f rrr ), and quartic (f rrrr ) force constants in aJ Å22, aJ Å23, and
aJ Å24, respectively.

bReference 38.
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separately to the~relatively small! reference space and com
paring the recomputed CI energy to an energy-lower
threshold. Hence, the multireference excitation space is
titioned into an internal space subjected to a final, large c
figuration interaction treatment, and an external space wh
effects are quantified by Brillouin–Wigner perturbatio
theory. In 1995, Krebs and Bruenker21 reported a new table
direct CI algorithm capable of handling MRD-CI intern
spaces up to several hundred thousand determinants.

In 1989, Knowles22 introduced an algorithm for FC
computations in which the expansion vectors (bi) of the
Davidson method23 are artificially made much sparser an
left in nonorthogonal form, thus reducing both storage
quirements and arithmetic operations. Converged CI ener
are obtained as a function of diminishing thresholds for d
carding elements of bothbi andsi(5Hci) vectors, giving a
series which approaches the numerically complete FCI
sult. The algorithm was hailed24 as means of unlimited FC
calculations. A similar method is the dynamic CI approa
of Mitrushenkov,25,26 which employs a two-vector, nonor
thogonal Davidson scheme2,23,25and discards determinants
each iteration simply according to their magnitude in t
current CI vector. The zero threshold energy~ZTE! exten-
sion of the method essentially entails a single, numeric
complete Davidson update on the final dynamic CI result
each cutoff. Recently, Mitrushenkov27 has also performed
dynamic CI1ZTE in a restricted internal space and treat
external space contributions via second-order perturba
theory.

A valuable benchmark computation for testing these
lective CI methods is the FCI energy of NH3 in an ANO
basis of DZP quality. With their sparse diagonalization alg
rithm, Knowles and Handy24 first proposed an energy o
256.423660.0001Eh, but lower results were later foun
both in a CIPSI study28 (256.423 825Eh) and unpublished,
selected CI work by Mitrushenkov and Amo
(256.423 93Eh).

29 This controversy was finally resolved b
two independent determinations30,31 of an even lower exac
FCI energy (256.424 007Eh). This example shows tha
schemes for approaching the FCI limit may suffer fro
g
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unexpectedly large contributions by the multitudinous n
glected determinants.

In this letter we report high-order benchmark correlati
treatments~CISDTQ, CCSDT, CISDTQPH, and FCI! for the
problematic multireference electronic structures of grou
state C2 and CN1, two of the species investigated b
Wulfov.4 Unlike most other studies of this kind, our work
concerned with the correlation convergence of not only
total energy,r e , andve , but also higher derivatives of th
potential energy curves and anharmonic spectroscopic
stants. The performance of selective CI techniques is a
addressed in comparison to the exact FCI method wit
view toward both accuracy and smoothness criteria desir
for extrapolation schemes.

COMPUTATIONAL DETAILS

In this study a DZP basis was employed which is co
prised of standard Huzinaga–Dunning32 double-z sp sets
augmented with Cartesiand-type polarization manifolds on
the carbon@ad(C)50.75# and nitrogen@ad(N)50.80# at-
oms. The basis consists of 32 contracted Gaussian funct
for both C2 and CN1, the contraction scheme bein
C(9s5p1d/4s2p1d) and N(9s5p1d/4s2p1d). The carbon
and nitrogen 1s core and corresponding virtual~canonical
Hartree–Fock! orbitals were frozen in all correlation trea
ments, thus allowing a direct comparison to previo
work.4,33 The resulting CI wave functions forX 1Sg

1 C2 con-
tained 582 455~CISDTQ!, 16 786 215~CISDTQPH!, and 52
407 353~FCI! determinants inD2h symmetry, while those
for X 1S1 CN1 contained 1 164 439~CISDTQ!, 33 569 231
~CISDTQPH! and 104 806 425~FCI! determinants inC2v
symmetry. These computations, as well as the coup
cluster~CCSDT! procedures, were performed using the P
package,34 as linked with the determinant-based configu
tion interaction programDETCI.35

The spectroscopic constants~Table I! were determined
by fitting fifth-order polynomials to sets of five energy poin
tightly converged to 10210 Eh and uniformly distributed
around the best availabler e estimates4,33 at intervals of 0.005
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TABLE II. Comparison of DZP correlation treatments forX 1Sg
1 C2 andX 1S1 CN1.a

Method

X 1Sg
1 C2 X 1S1 CN1

Ee r e ve Ee r e ve

CISDTQ 275.724 770 1.2650 1842.5 291.994 007 1.1975 2000.8
CCSDT 275.728 136 1.2675 1829.1 291.998 324 1.1993 1988.4
CI1PT(1025)b 275.729 69 1.268 1875 291.999 22 1.204 2010
CI1PT(1026)b 275.730 72 1.269 1825 292.000 81 1.201 1980
CI1PT(1027)b 275.731 38 1.269 1810 292.001 50 1.202 1970
CISDTQPH 275.731 495 1.2694 1814.6 292.001 709 1.2010 1974.5
FCI 275.731 641 1.2695 1813.4 292.001 875 1.2012 1973.6

aTotal energies (Ee) in hartree, equilibrium bond lengths (r e) in Å, and harmonic frequencies (ve) in cm21.
bReference 4. As described in the text, these energies result from a combination of configuration interact
perturbation theory applied to internal and external spaces, respectively, partitioned with a second-order
thresholdh5102n.
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Å (C2) or 0.010 Å (CN1). The quintic coefficient was in-
cluded under the constraintf rrrrr 5r5( f rrrr )2/ f rrr with r5

51.07, as suggested by a collection of related molec
force field data36 and broadly supported by the univers
Morse oscillator ratior5545/49. Each fifth-order polyno
mial was then used to determine force constants thro
fourth order and a complete set of spectroscopic constan37

@ve , Be , vexe , D̄e , and ae# at its interpolatedr e value,
which always lay within 0.001 Å of the initial estimate. Th
estimated quintic term in the polynomials accounts for va
tions in f rrrr of the order of 1% in shifting the referenc
point to the interpolatedr e , but it has no bearing on th
low-order constants. Starting with the minimum energy v
ues, the force constants~Table I! reproduce to all significan
digits the computed energies, which are available at htt
zopyros.ccqc.uga.edu/Newpgs/supp–mat.html .

RESULTS AND DISCUSSION

The C2 and CN1 species exhibit intricate electroni
structures engendered by a near degeneracy of the fifs
orbital and firstp orbital. Spectroscopic probes have esta
lished that C2 has a1Sg

1 ground state with the primary elec
tronic configuration (1sg)2(1su)2(2sg)2(2su)2(1pu)4

(3sg)0, while a 3Pu and b 3Sg
2 states involving

...(1pu)3(3sg)1 and ...(1pu)2(3sg)2 configurations lie at
Te5716 and 6434 cm21, respectively.38 In the CN1 case,
large internally contracted multireference configuration int
action wave functions computed with correlation consist
basis sets from double- through quintuple-z place the lowest
(1S1,3P) pair of electronic states atTe5(0, 880
6100) cm21.39,40 Whereas the1S1 state of CN1 is well
characterized spectroscopically, no triplet systems of C1

have been observed to date, leaving experimental uncerta
as to the identity of the ground state. Incorporation of
C2@(2su)2→(3sg)2# and CN1@(4s)2→(5s)2# pair excita-
tions is paramount to proper zeroth-order descriptions, ca
ing these species to be severe tests for highly correl
single-reference methods. Our exploratory computati
have indicated that within the DZP basis, a configurat
interaction method must include pentuple substitutions fr
the Hartree–Fock reference, or the coupled-cluster appro
must contain connected triple excitations, to obtain eve
r
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qualitative description of the relative energy differenc
among the low-lying states of C2. In the DZP FCI wave
functions of X 1Sg

1 C2 and X 1S1 CN1, the first five CI
coefficients are~0.830,20.314,20.094, 0.085, 0.080! and
~0.822,20.300, 0.116,20.105, 0.092!, respectively, which
not only highlight the dominant two reference configuratio
of these systems but also reveal protracted contributi
from other important configurations. The widely usedT 1

diagnostic41,42 based on the singles amplitudes of couple
cluster wave functions confirms the multireference charac
In particular, the DZP~CCSD, CCSDT! T 1 values are
~0.039, 0.038! for C2 and ~0.062, 0.064! for CN1, as com-
pared to the suggested single-reference upper limit of 0.042

Our data for the systematic approach to the FCI limit
truncated single-reference configuration interaction a
coupled-cluster spectroscopic constants and total energie
presented in Tables I and II. For (C2,CN1) the CISDTQ,
CCSDT, and CISDTQPH total energies lie~6.9, 7.9! mEh,
~3.5, 3.6! mEh, and~0.15, 0.17! mEh, respectively, above the
~FCI! variational limit. For the bond distances and harmon
frequencies, the corresponding@r e(C2),ve(C2); r e(CN1),
ve(CN1)# discrepancies are@20.0045 Å, 128 cm21;
20.0037 Å, 127 cm21# ~CISDTQ!, @20.0020 Å,
116 cm21; 20.0019 Å, 115 cm21# ~CCSDT!, and
@20.0001 Å, 11.2 cm21; 20.0002 Å, 10.9 cm21# ~CIS-
DTQPH!. Thus, the isoelectronic C2 and CN1 systems ex-
hibit remarkably consistent behavior; the CISDT
→CCSDT→CISDTQPH→FCI series of (Ee ,r e ,ve) values
converges from~above, below, above! in a monotonic fash-
ion, with the CCSDT method roughly halving the CISDT
deficiency and the CISDTQPH level essentially complet
the approach to the FCI limit. Accordingly, the exact F
values support the conclusion of the CI1PT study4 that the
CCSDT method supplies more accurate approximations
the FCI energy,r e , andve than the CISDTQ level for these
two difficult multireference problems. Preferring CISDTQ
CCSDT as a benchmark method33 may thus be unjustified
for systems with eight electrons or more. Nonetheless, O
and co-workers43 have executed an extensive series of 1
electron correlation energy calculations on water in a vale
double-zeta basis with polarization functions, finding that
most bond distances the reproduction of FCI energies
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lowed the sequence CCSDT,CISDTQ,CCSDTQ
,CISDTQPH.

For f rrr and f rrrr the accuracy trends are the same as
Ee , r e , and ve but less systematic, perhaps because b
stretching force constants become increasingly dominate
nuclear–nuclear repulsion rather than electronic effects
the order of the derivative increases.44 A measure of the
balance of the anharmonic force constant predictions fo
given level of theory is afforded by the ratior4

5 f rrrr f rr /( f rrr )2, which is exactly 7/9 for all Morse oscil
lators. For C2 and CN1, the ~CISDTQ, CCSDT,
CISDTQPH, FCI! sequence ofr4 values is~0.738, 0.754,
0.730, 0.737! and ~0.745, 0.743, 0.718, 0.716!, respectively.
The one result falling outside the anticipated CISDT
,CCSDT,CISDTQPH'FCI accuracy trend is that o
CCSDT for C2. In a similar manner, theae and vexe con-
stants listed in Table I, which generally exhibit the tre
observed for all other data, show that CCSDT is aberran
the C2 case, being outperformed by CISDTQ due to a poo
balance among higher-order derivatives rather than redu
absolute accuracy in the anharmonic force constants.

Although the focus of the current study is to provid
highly correlated predictions of spectroscopic consta
within a limited basis, it is worthwhile to compare the the
retical results to the experimentally determined values. T
equilibrium bond lengths in C2 and CN1 are substantially
overestimated at the DZP FCI level, by 0.027 Å and 0.028
respectively, and concomitantly the harmonic frequencies
underestimated by 40– 60 cm21. The corresponding errors i
ae andvexe range from 1% to 4%. Mitigating the imbalanc
of the FCI correlation treatment vis-a`-vis the limited DZP
basis set by employing more approximate correlation me
ods improves the agreement with experiment, strikingly so
the case of CISDTQ forve(C2). However, for the purpose
of converging on accurate spectroscopic predictions, a pro
theoretical balance should not expand the correlation tr
ment beyond the~comparatively modest! CCSD method un-
til the basis set is at least of triple-z plus (2d 1f )
quality.45–47

Assessment of Wulfov’s CI1PT predictions4 is effectu-
ated by the data in Table II. The CI1PT(h) energies result
from a combination of configuration interaction and pert
bation theory applied to internal and external spaces, res
tively, and partitioned with a second-order energy thresh
h5102n. For (C2,CN1) the CI1PT method approaches th
FCI energy from above and to an accuracy of~0.26, 0.38!
mEh, while reproducing the FCIr e andve values to within
~0.0005, 0.0008! Å and (3.4, 3.6) cm21, respectively. The
CISDTQ and CCSDT results forEe , r e , and ve are sur-
passed by the CI1PT(1026) predictions, indicating the in-
clusion of pentuple and hextuple substitutions in the ass
ated selected CI wave functions. These comparisons re
that the efficient CI1PT scheme is indeed capable of acc
rate predictions of not only the energy but also spectrosco
constants.~It should be pointed out at the same time th
non-size-extensive CI1PT extrapolation schemes may e
hibit diminished accuracy for larger systems, a problem
present in any coupled-cluster ansatz for the wave functi!
However, forX 1Sg

1C2 andX 1S1CN1 a configuration se-
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lection threshold less than 1027 appears necessary for th
CI1PT FCI estimates to surpass those computed
CISDTQPH. Of course, the computational savings compa
to explicit FCI are a distinct advantage of the CI1PT ap-
proach. The largest computation reported here~one FCI en-
ergy point for CN1, 105 million determinants! used approxi-
mately 75 h, 2 GB of core memory, and 10 GB of di
storage on an IBM RS6000 model 595. In contrast, Wulfo4

reported that a CI1PT(1028) computation on the much
larger X 1Sg

1 F2 system required about 2 h, 5 MB of cor
memory, and perhaps a few hundred MB of disk storage
an IBM 486DX2-66 PC.

An important aspect of concern for selected CI schem
is that the potential energy surfaces computed from them
display discontinuities. The frequency, magnitude, and sc
at which these irregularities arise is not well documented
the literature. Such aberrant surface features could affect
lecular properties computed via central difference te
niques, unless the displaced geometries involve the exac
of configurations selected at the initial~nondisplaced! struc-
ture. On the other hand, the analytic computation of mole
lar properties in such schemes should be less affected, s
the CI1PT surface corresponding to a~discretely! fixed set
of configurations should be smooth and differentiable. In t
respect it seems that explicit FCI benchmark data for high
order force constants should aid the development of b
accuracy and smoothness criteria for selected CI meth
and their correlation extrapolations. Accordingly, the rep
duction of the anharmonic data for C2 and CN1 obtained
here~Table I! is elevated as a goal for future work.
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